First *de-novo* transcriptome assembly for gene identification, analysis and annotation, transcriptional level study, and molecular marker discovery in *Onobrychis viciifolia*

M. Mora-Ortiz1, L. M. J. Smith1, T. A. Wood1 and L. Skøt2

1 NIAB, Huntingdon Road, Cambridge, CB3 0LE, U.K.
2 Aberystwyth University, BISRD, Gogerddan, Aberystwyth, Ceredigion, SY23 3DQ, U.K.

marina.moraortiz@niab.com

Key words: de-novo assembly, RNA-seq, *Onobrychis viciifolia*, CLC, AlbySS, Trinity, Velvet/Oases, tannins, molecular markers and annotation.

Introduction

Onobrychis viciifolia (sainfoin) is an emerging tanniferous leguminous forage crop, traditionally grown as a long term perennial ley across Eurasia and North America, where it is used primarily for livestock feed [1].

Sainfoin has beneficial biopharmaceutical, nutritional and environmental attributes, mainly attributed to the presence of condensed tannins [2].

Sainfoin benefits

• Agronomic and environmental: *O. viciifolia* is highly drought tolerant, resistant to most common pests and diseases, and has nitrogen fixing activity in the root nodules [3-5].

• Biopharmaceutical and nutritional: sainfoin has an excellent nutritional profile and anti-parasitic properties attributed to presence of high molecular weight condensed tannins, can reduce methane emissions and improve protein uptake due to ‘rumen-escape’ protein metabolism [6].

O. viciifolia could be an alternative to *Medicago sativa* (alfalfa) however its agronomic shortcomings (with 20% lower yields than in alfalfa) allied to little systematic breeding of improved varieties have contributed to low popularity with farmers [7,8]. This project therefore sets out to develop tools to initiate a molecular breeding initiative.

Objectives: to i) obtain and annotate the first de novo transcriptome assembly of *Onobrychis viciifolia*, ii) explore principal pathways and their transcriptional levels and iii) produce a large collection of SNPs and SSRs for further mapping analysis.

Results & Conclusions: To our knowledge, this is the first comprehensive transcriptome study conducted in *O. viciifolia*. The results headings are:

• Reference assembly/assemblies of 5 accessions (5 methods compared).

• 5 M SNPs + 3,500 SSR – Marker mining.

• Over 98,000 GOs – Annotation and Ontology study.

• RPKM for over 90,000 contigs – Transcriptional level study. Such markers have the potential to be utilized as tools for future molecular breeding approaches in order to improve sainfoin genetic resources.

Material & Methods: Fig 5, General Pipeline

Fig 1, Sainfoin harvesting

Fig 2, SSRs design

Fig 3, Expression level study - Metabolism Overview

Fig 4, Annotation of the first de novo transcriptome assembly of sainfoin

Bibliography

